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Abstract A common problem in mapping quantitative
trait loci (QTLs) is that marker data are often incom-
plete. This includes missing data, dominant markers,
and partially informative markers, arising in outbred
populations. Here we brie#y present an iteratively re-
weighted least square method (IRWLS) to incorporate
dominant and missing markers for mapping QTLs
in four-way crosses under a heterogeneous variance
model. The algorithm uses information from all
markers in a linkage group to infer the QTL genotype.
Monte Carlo simulations indicate that with half domi-
nant markers, QTL detection is almost as e$cient as
with all co-dominant markers. However, the precision
of the estimated QTL parameters generally decreases
as more markers become missing or dominant. Notable
di!erences are observed on the standard deviation of
the estimated QTL position for varying levels of
marker information content. The method is relatively
simple so that more complex models including multiple
QTLs or "xed e!ects can be "tted. Finally, the method
can be readily extended to QTL mapping in full-sib
families.
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Introduction

Dominant DNA markers are commonly used for
mapping analysis in plants and animals due to the

advent of e$cient PCR (polymerase chain reaction)-
based methods for amplifying random DNA sequences.
Random ampli"ed polymorphic DNA (RAPD) and
ampli"ed fragment length polymorphism (AFLP) are
two such examples. Because little prior genomic in-
formation is required, the abundance and accessibility
of PCR-based markers for virtually any species is a
major advantage.

For mapping quantitative trait loci (QTLs), marker
data are often incomplete. In addition to missing-data,
another type of missing-marker data arises when
markers are dominant, or when partially informative
markers are used in experiments with outbred species.
Dominant markers such as RAPDs generally show
only two patterns, presence or absence of a band;
consequently, a heterozygote has the same phenotype
(band pattern) as one of the homozygotes. To deal with
partial or missing-marker data, Lander and Green
(1987) (cf. Kruglyak and Lander 1995) proposed
a hidden Markov model to recover missing informa-
tion. Jiang and Zeng (1997) used a similar idea for QTL
mapping in line-cross experiments. Jansen (1996)
developed a Monte Carlo EM algorithm via Gibbs
sampling to handle missing and dominant markers.
Although the algorithms developed by Lander and
Green (1987) and by Jansen (1996) are general and may
be used for outcrossing populations and complex pedi-
grees, these methods require extensive computation,
particularly when the number of markers with incom-
plete information is large (Jiang and Zeng 1997).
Furthermore, the original method of Lander and Green
(1987) is feasible only for small pedigrees in human
genetic studies.

The problems of dominant markers can be avoided
by using backcross families, (doubled) haploid families,
or recombinant inbred lines, but not with F

2
, four-way

crosses, or outbred populations (Plomion et al. 1996;
Jiang and Zeng 1997). In view of this, we present an
iteratively re-weighted least-square method (IRWLS)
to incorporate dominant and missing markers in



four-way crosses. In particular, we modify Jiang and
Zeng's (1997) algorithm to determine the distribution of
QTL genotypes given observed marker phenotypes in
four-way crosses. We choose four-way crosses as an
example because the method of QTL mapping in four-
way crosses sheds light upon experiments with outbred
populations (Xu 1996) and is similar to that in full-sib
families (Knott et al. 1997) and in sib mating designs
(Xie et al. 1998). In addition, the IRWLS has an advant-
age over simple regression (REG) with regard to com-
putational speed and the merit of maximum likelihood
(ML) in a consideration of the heterogeneous residual
variance (Xu 1998). Because the speed of IRWLS is
nearly the same as that of REG it can be used for large
genomic scanning or for multiple-data analyses, such
as permutation tests (Churchill and Doerge 1994)
and bootstrap construction of con"dence intervals
(Visscher et al. 1996). The method is relatively simple so
that more complex models, including multiple QTLs or
"xed e!ects, can be "tted simultaneously to increase the
power of QTL detection by reducing the residual vari-
ance (Haley and Knott 1992; Jansen 1993; Zeng 1994).
In the present paper, we brie#y describe the IRWLS
incorporating dominant and/or missing markers for
QTL mapping in four-way crosses under a heterogen-
eous residual variance model. We further explore the
statistical power and QTL parameter estimation of the
proposed algorithm via Monte Carlo simulations.

Statistical methods

Genetic model

A four-way cross consists of two single crosses and can be expressed
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Because the QTL genotype is unobservable, the phenotype has
a mixture of four distributions. Let y

k
be the phenotypic value of the

kth progeny from a four-way cross. Then, it can be described by the
following mixture model:
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where k is the population mean, G
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is the genetic e!ect of genotype,
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The genetic e!ect, G
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, is a composite term. It consists of the

additive e!ects of alleles from both paternal and maternal parents
and the interaction e!ect (dominance) between alleles, i.e.,
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where am
1

and am
2

are respectively the e!ects of the paternal and the
maternal alleles of the male parent, af

1
and af

2
are respectively the

e!ects of the paternal and the maternal alleles of the female parent,
and d

ij
is the dominance e!ect.

Model (1) is over-parameterized because the sum of X
k
equals the

coe$cient of k. The equivalent form of model (1) can be rewritten as
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Weighted regression analysis

Because the QTL genotype is unobservable, X
k

are missing. How-
ever, the distribution of the QTL genotype can be inferred from
linked markers, i.e., X

k
can be estimated from marker genotypes. Let

p
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be the probability of the QTL genotype conditional on marker
genotypes when X
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kij
"E(X

kij
"1DI

M
)"Pr(X

kij
"1 DI

M
),

where I
M

means the information of markers and an explicit de"ni-
tion is given later. By substituting the conditional expectation of
X

kij
into (2), we have
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Note that the residual error e
k

now is di!erent from that given in
equation (2).

In matrix notation, equation (3) can be written as

y"Pb#e , (4)

where P"Mp
kij

N is an N]4 coe$cient matrix, b is a 4]1 vector of
unknown parameters and N is the number of individuals.

Now model (3) is a mixture of four distributions with a hetero-
geneous residual variance. The simple regression analysis under the
assumption of a homogeneous variance provides a residual variance
estimate that contains part of the QTL variance due to the uncer-
tainty of QTL genotypes (Xu 1995, 1998).

With the weighted least-square method, the distribution of X
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not required. Only the expectation and co-variance of X
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Let<ar(e)"V, where V is a diagonal matrix with the kth element on
the diagonal being

<ar (e
k
)"b T+

k

b#r2e , (5)

where T denotes the matrix or vector transposition. Note that the
"rst part, bT +

k
b, is the variance not explained due to the uncertain-

ty of the QTL genotype, and the second term r2e , is the pure error
variance (Xu 1995, 1998). The generalized least squares involves
minimizing (y!Pb)TV}1(y!Pb) with respect to b. This leads to

b<"(PTV~1P)~1PTV~1y (6)
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and

p( 2e"
1

N!4
[y!Pb< ]TV~1[y!Pb< ]. (7)

Because V is a function of the unknown parameters, it must be
updated using the estimated b and iteration is required. The process
is repeated several times until convergence (Xu 1998).

After solving for, b< , three independent estimable e!ects can be
computed through [a( m a( f d) ]T"HTb< , where a( m and a( f are the aver-
age e!ects of gene substitution for the male and female parents,
respectively (Falconer and Mackay 1996), d) is the interaction
between paternal and maternal alleles or called the dominance e!ect,
and HT is a 3]4 matrix containing the coe$cients of contrasts as
will be de"ned later. The three genetic e!ects are de"ned as
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Finally, the total genetic variance is
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16d) 2 is the dominance variance.

Tests of hypotheses

To test the hypothesis that no QTLs are segregating, i.e., H
0
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[am af d]T"0, which is equivalent to HTb"0, we use an F-test

statistic,
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The overall test statistic can be partitioned into three separate
tests each with a single degree of freedom:
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The F-test statistic for the speci"c e!ect becomes
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for i"1, 2, 3.

Inferring the QTL genotype from dominant markers
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o!spring has a given marker genotype, M
t
"u, conditional on the

genotypes of its parents at marker t. When a marker is fully informa-
tive, all four genotypes are distinguishable, that is, p
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The transition probability matrix between the marker and the hy-
pothesized QTL is similarly de"ned. Our purpose here is to estimate
the conditional probability Pr(M
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(M
12

M
s
). According to Bayes' theorem, the probability of the

QTL genotype conditional on marker information (I
M

) can be
computed as:

Pr(M
q
"uDI

M
)"

Pr(M
q
"u)Pr(I

M
DM

q
"u)

+4
u/1

Pr(M
q
"u)Pr(I

M
DM

q
"u)

"

Pr(I
M

DM
q
"u)

+4
u/1

Pr(I
M

DM
q
"u)

, (10)
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Table 1 Probabilities p
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M
) conditional on the mat-

ing type and the observed o!spring phenotype, assuming that the
linkage phases in the parents are known (i.e., gene order) and that
A is a dominant allele and O is a recessive allele
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To determine the probability of Pr(I
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"u) using (1 1), the

key is to compute the D
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matrix or p
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"u DI

M
) at

each marker locus. With fully informative markers, D
t

has one
diagonal element of 1 for the observed marker genotype and 0 else-
where. With dominant or partially informative markers, D

t
may

have more than one non-zero diagonal element. To simplify the
problem, let us consider dominant markers such as RAPDs where
they generally show only two patterns: presence or absence of
a band. De"ne A as a dominant allele and O as a recessive allele. In
a four-way cross, the linkage phases of marker loci in the parents are
known. Furthermore, the AA and AO genotypes in the parents can
be inferred from the grand-parents. However, unlike an F

2
family

where there is only one mating type, a four-way cross may include
three genotypes (AA AO OO) and nine mating types (AA AO OO)2.
Computation of p

tu
depends on the mating type as well as the

o!spring's marker genotypes. Table 1 presents p
tu

values and pos-
sible mating types in a four-way cross. The mating types (e.g.,
O

1
A

2
]O

1
A

2
) di!er from A

1
O

2
]A

1
O

2
due to the fact that the

linkage phases are ignored.
The algorithm described in this paper uses information from all

markers in a linkage group simultaneously to determine the QTL
genotype (Fulker et al. 1995; Kruglyak and Lander 1995; Xu and
Gessler 1998).

Simulation studies

To evaluate the e!ects of dominant and missing markers on map-
ping QTLs, we simulated one chromosome of length 100 cM with 11
markers evenly spaced along the chromosome. One QTL was
simulated at position 25 cM with a sample size of 300 individuals.
The linkage map is assumed to be known. Five levels of marker
information content were investigated: (1) all markers are co-domi-
nant with no missing markers (standard); (2) 50% of the loci in the
parents are randomly set to dominant with no missing markers in
the o!spring; (3) 50% of the loci in the o!spring are randomly set to
missing markers; (4) 50% of the loci in the parents are randomly set
to dominant and 50% of the loci in the o!spring are randomly set to
missing; and (5) all loci are dominant.

In the simulation, up to four alleles for co-dominant markers
and two alleles (presence or absence) for dominant markers at
each locus in each of the two parents were sampled at random from
the base population with an equal frequency for each allele. The
variance of the environmental e!ect was set at p2e"1.0. The interac-
tion e!ect was set at d"0. The average e!ect of a gene substitution
was examined at three levels, am"af"0.324, 0.594 and 1.155,
which corresponded to the additive genetic variances of
p2
G
"p2

A
"0.0526, 0.1765 and 0.6670, or equivalently to h2"0.05,

0.15 and 0.40, respectively. Under each condition, the simulation
was repeated 120 times. The standard error of a parametric estimate
is calculated from the standard deviation of the estimates among 120
replicates. The statistical power is determined by counting the num-
ber of runs out of 120 replicates which have the overall F-test
statistics (Eq. 8) greater than an empirical threshold. To estimate the
strength of a false positive signal, we ran an additional 1000 simula-
tions with no QTL segregating. The empirical threshold under each
condition was then obtained by determining the 955) percentile of
the highest F-test statistic (Eq. 8) from the list of 1000 runs under the
null model.

Results

The overall F-test statistics with a heritability of 0.15
for "ve levels of marker information content are plotted
against the genomic position (Fig. 1). Results indicate
that the highest level of marker information (1)
with co-dominant and no missing markers produces
the highest and the most-narrow peak. The test statis-
tics decrease as the marker information content dimin-
ishes. The marker information (2) with 50%
dominant and no missing markers has a greater test
statistic than the marker information (3) with 50%
missing markers. Similarly, the marker information (5)
with 100% dominant and no missing markers has a test
statistic larger than the marker information (4) with
50% dominant and 50% missing markers. The other
important feature shown by the "gure is that, with less
marker information, the peak of the curve (test statistic)
tends to be #at, indicating that QTL detection has
a great uncertainty.

More detailed results on estimated QTL e!ect,
position, QTL heritability and residual variance with
varying marker information contents are presented in
Table 2. The results indicate that precision of estimated
QTL parameters generally decreases as more markers
become missing or partially missing (dominant). There
is little di!erence on the point estimates of QTL e!ects,
heritability and residual variance for di!erent marker
information contents except for 100% dominant
markers (5). However, under varying levels of marker
information content notable di!erences are observed
on the standard deviation of the estimated QTL
position. In the case of all dominant markers, the esti-
mated QTL e!ects are generally biased downward and
the QTL position is biased toward the center. The
levels of QTL heritability have a strong e!ect on the
precision of the estimated QTL position but
have a small e!ect on the estimated QTL e!ects and
residual variance. As expected, a high QTL heritability
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Table 2 Results on estimated QTL e!ects, position, heritability and residual variance for "ve levels of marker information content.
Parameters used for simulation are: d"0, p2e"1.0 and QTL position (QP)"25 cM. Standard deviations among 120 replicates are given in
parentheses

am (af) h2 MI! Estimate

1
2
(a( m#a( f) d) O)P(cM) hK 2 pL 2e

0.324 0.05 (1) 0.318 (0.097) !0.023 (0.326) 26.37 (16.64) 0.053 (0.028) 0.996 (0.081)
(2) 0.314 (0.103) !0.063 (0.370) 27.20 (15.23) 0.049 (0.028) 0.990 (0.086)
(3) 0.330 (0.100) 0.033 (0.389) 28.98 (18.58) 0.056 (0.031) 0.988 (0.090)
(4) 0.340 (0.148) 0.057 (0.572) 30.49 (21.80) 0.066 (0.051) 0.970 (0.092)
(5) 0.319 (0.256) 0.043 (1.083) 31.72 (25.39) 0.080 (0.111) 0.888 (0.262)

0.594 0.15 (1) 0.603 (0.093) !0.027 (0.324) 25.30 (4.35) 0.155 (0.044) 0.993 (0.088)
(2) 0.594 (0.097) 0.024 (0.343) 25.35 (6.98) 0.151 (0.046) 0.993 (0.095)
(3) 0.596 (0.116) !0.014 (0.374) 24.40 (6.62) 0.156 (0.057) 0.980 (0.088)
(4) 0.589 (0.117) 0.011 (0.434) 26.19 (12.52) 0.153 (0.061) 0.970 (0.108)
(5) 0.540 (0.351) 0.120 (1.350) 28.24 (19.07) 0.140 (0.343) 0.928 (0.215)

1.155 0.40 (1) 1.153 (0.089) 0.011 (0.267) 24.90 (2.39) 0.400 (0.045) 0.993 (0.076)
(2) 1.162 (0.115) 0.070 (0.341) 25.50 (3.63) 0.406 (0.064) 0.989 (0.107)
(3) 1.173 (0.098) 0.019 (0.366) 25.08 (3.61) 0.411 (0.054) 0.984 (0.107)
(4) 1.154 (0.136) !0.040 (0.555) 25.71 (5.71) 0.400 (0.076) 0.990 (0.145)
(5) 1.128 (0.563) !0.175 (1.984) 26.90 (12.55) 0.391 (0.140) 0.931 (0.325)

!MI, marker information: (1) co-dominant with no missing markers (standard); (2) 50% dominant; (3) 50% missing; (4) 50% dominant and
50% missing; (5) 100% dominant

Fig. 1 Comparison of the F-test statistics of QTL mapping in
a four-way cross population with a size of 300 individuals for "ve
levels of marker information content: (1) co-dominant with no miss-
ing markers (standard); (2) 50% dominant; (3) 50% missing; (4) 50%
dominant and 50% missing; (5) 100% dominant. Eleven markers are
evenly spaced along a 100-cM chromosome. A single QTL ac-
counting for 15% additive genetic variance is at the 25-cM position

decreases the standard deviation of the estimated QTL
position. When the QTL e!ect is small, as in the case of
h2"0.05, the estimated QTL position is biased. This
bias is caused by some runs where the QTL e!ect is not
signi"cant. In these situations, the QTL position, on
average, tends to be close to the center.

The empirical threshold values of test statistics over
1000 replicated simulations are reported in columns

6 and 7 of Table 3. Slight di!erences among these
critical values across the levels of marker information
content can be observed with the co-dominant and no
missing markers having the highest critical values,
whilst the dominant markers have the lowest critical
values. Similar results were observed by Xu (1998) in
F
2

families. The average test statistics and the power
estimates (Type-I error rate at c"0.05 and c"0.01)
over 120 replicated simulations are summarized in
Table 3. Generally, the test statistics and the power of
QTL detection increase as the marker information con-
tent increases. When the power is not already high, as
in the case of h2"0.05, marker information (1) with all
co-dominant and no missing markers has the greatest
power. In contrast, marker information (5) with all
dominant markers has the lowest power. As expected,
when the power is already high (e.g. h2

g
"0.4), the

di!erence in the power between varying levels of
marker information content disappears.

A four-way cross is analogous to a two-way ANOVA
experiment. The overall F-test statistic (¹) can be
partitioned to three separate tests: one (¹

m
) for QTL

segregation in the male parent (L
1
]L

2
), one (¹

f
) for

QTL segregation in the female parent (L
3
]L

4
), and

one (T
m]f

) for the interaction (dominance) e!ects (Xu
1996). Figure 2 gives an example of the test statistics for
a QTL with a heritability of 0.15 and located at 25 cM
of the chromosome. The pro"les of the test statistics
(curves) perform exactly as expected. The overall test
(¹) for the presence of a QTL has a signal twice as great
either ¹

m
or ¹

f
separately. Whereas ¹

m
and ¹

f
have

similar curves because am"af"0.297, and ¹
m]f

has
a #at curve near zero because d"0.
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Table 3 Empirical threshold
values, the overall F-test statistics
and the power (%) of QTL
detection for "ve levels of marker
information content. Standard
deviations among 120 replicates
are given in parentheses

h2 MI! Test statistic Power (%) Threshold value

c"0.05" c"0.01 95% 99%

0.05 (1) 18.01 (8.25) 68.33 44.17 12.70 17.25
(2) 15.15 (6.81) 63.33 43.33 11.74 15.46
(3) 15.31 (6.86) 60.83 30.00 12.52 17.25
(4) 14.02 (7.55) 63.33 33.33 11.49 15.70
(5) 13.62 (8.01) 62.50 28.33 10.85 16.77

0.15 (1) 50.80 (16.16) 100.00 100.00 12.71 17.40
(2) 43.81 (14.31) 98.33 97.50 11.69 14.93
(3) 41.86 (16.42) 98.33 97.50 12.52 15.54
(4) 33.47 (12.93) 97.50 92.50 11.50 15.58
(5) 31.08 (15.25) 87.50 82.50 11.53 15.34

0.40 (1) 168.84 (34.54) 100.00 100.00 12.53 15.92
(2) 150.44 (40.63) 100.00 100.00 11.56 15.26
(3) 134.21 (28.79) 100.00 100.00 12.22 15.80
(4) 102.10 (35.54) 100.00 100.00 11.82 15.81
(5) 100.70 (42.31) 98.33 98.33 11.20 14.05

!See Table 2 for notations of MI
"c is the Type-I error rate

Fig. 2 Pro"le of the F-test statistics for QTL mapping in a four-way
cross population with a size of 300 individuals. Eleven co-dominant
markers are evenly spaced along a 100-cM chromosome. A single
QTL explaining 15% additive genetic variance is at the 25-cM
position.¹ is the overall test for the presence of a QTL; ¹

m
is the test

for QTL segregation in the male parent; ¹
f

is the test for QTL
segregation in the female parent; and ¹

.]&
is the test for the QTL

dominance e!ect

Discussion

Saturated maps have been constructed for a number of
species using restricted fragment length polymorphisms
(RFLPs), but RAPDs and AFLPs provide signi"cant
advantages in speed and e$ciency for constructing
such maps in order to locate important genes, espe-
cially in some allogamous species such as forest trees
where little prior genetic information is available
(Williams et al. 1993; Grattapaglia and Sedero! 1994;

Plomion et al. 1996). Because PCR-based markers are
rich, and less expensive, genetic mapping of genes (or
QTLs) by using dominant markers is widely applicable
and will become a common practice. In view of this,
concerns have been expressed on the use of these
markers in genetic mapping due to their partial in-
formation content (MartmHnez and Curnow 1994; Knapp
et al. 1995; Jansen 1996; Plomion et al. 1996; Jiang and
Zeng 1997).

In this paper, we demonstrate a method for QTL
mapping with dominant or missing markers in four-
way crosses. A four-way cross involves four parental
lines. It di!ers from an F

2
family in that a four-way

cross population may have a maximum of four alleles
at each marker locus or at the QTL, whereas an
F
2

family may have only two alleles at each locus. The
four-way cross (L

1
]L

2
)](L

3
]L

4
) design is also ana-

logous to two backcrosses. This essentially increases
the possibility of detecting QTLs compared to that of
an F

2
family because the probability of no QTL segre-

gation in both L
1
]L

2
and L

3
]L

4
is less than that in

only one of them (Xu 1996). A full-sib family may also
have four alleles at each locus. In this sense, the four-
way cross is more similar to a full-sib family (Knott
et al. 1997) and to sib mating designs (Xie et al. 1998).
Given that the linkage phase in a full-sib family can be
inferred, QTL mapping in a four-way cross population
is identical to that in the full-sib family or to the
population resulting from sib matings. Therefore, the
method presented here can be readily extended to out-
bred populations.

Xu (1998) has shown that the weighted regression
method (IRWLS) is virtually identical to the ML
method in terms of computational results in F

2
families, yet it retains the advantages of REG in simpli-
city and high computational speed. In this paper, we
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incorporate IRWLS with dominant or missing markers
for QTL mapping in four-way crosses. Our results
indicate that dominant markers are useful for QTL
detection, but they are not as e$cient as co-dominant
markers in determining the QTL position and in
estimating QTL parameters. The power of QTL detec-
tion with half dominant markers (2) is almost the
same as that with all co-dominant markers (1) and
is higher than that with half missing markers (3)
when the power is not already high (e.g., h2"0.05).
However, the standard deviations of estimated QTL
parameters are virtually equivalent in the levels of
marker information content in (2) and (3). When QTL
mapping uses all dominant markers, the estimated
QTL position and parameters are severely biased and
have exceptionally large standard deviations. This is
caused by the large error in determining the QTL
distribution due to the uncertainty of marker geno-
types, whereas the latter results from the partial in-
formation content of dominant markers. In addition,
we have found that the QTL parameters are inesti-
mable in approximately 4% of the simulation runs with
all dominant markers, because V }1 or (PTV }1P)}1 can
not be inverted in these cases due to an insu$cient
marker information content.

The algorithm presented here can be used to "t for
multiple QTLs that are segregating in the same linkage
group. In practice, two types of multiple QTL models
can be distinguished: composite interval mapping
(Zeng 1994) and multiple QTL regression model (Haley
and Knott 1992). In our case with dominant markers,
the e$ciency of composite interval mapping is not
known because the #anking markers are not fully in-
formative. However, the multiple QTL regression
model is also applicable to the weighted regression
method (IRWLS). With multiple QTLs, an additional
term, Pb, for each QTL is added into Model (4). Sim-
ilarly, the residual variance can be partitioned to the
corresponding term for each QTL due to the uncertain-
ty of QTL genotypes and the pure error variance
(cf. Eq. 5). Because of the simplicity of IRWLS, the
stepwise method of regression can be used to search for
multiple QTLs. However, the e$ciency of the multiple
QTL model requires further investigation.

When markers are fully informative, the position of
the QTL is restricted within the bracket of the two
nearest #anking markers if there is a QTL. With miss-
ing and/or dominant markers, QTL mapping extracts
extra information beyond the two nearest #anking
markers. Equivalently, the resulting e!ect can be seen
as increasing the bracket (distance) of two #anking
markers so that the QTL is more variable in location
within the bracket. In our simulation, the linkage map
is assumed to be known. However, in practice the
linkage map is often less certain or requires to be
determined from the same dataset that is used for QTL
mapping. Jiang and Zeng (1997) have investigated the
consequence of missing and dominant markers on

marker linkage map construction in an F
2

population.
Their results indicate that the proportion of correct
linkage order decreases as more markers become miss-
ing or partially missing, and is low when markers are
dominant and recessive in alternate order. Neverthe-
less, the proportion of intervals with correct #anking
markers remains reasonably high. It would be expected
that an ambiguous linkage map signi"cantly a!ects
QTL mapping, and particularly on QTL parameter
estimates. Hence, it is important for QTL mapping to
combine dominant and co-dominant markers. The
signi"cance of co-dominant markers lies in the fact that
they provide landmarks in various positions of the
genome.

We have developed a FORTRAN program to
perform IRWLS analysis for QTL mapping with
dominant or missing markers in four-way crosses. This
program is available upon request.
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